Image Arithmetic & Bitwise Operations
One of the most powerful features in OpenCV is its ability to manipulate image pixel data directly using arithmetic operations and bitwise logic. These operations form the foundation of image blending, masking, object highlighting, and more.
➕ Arithmetic Operations
OpenCV provides functions to perform element-wise addition, subtraction, division, and multiplication on images or pixel values.
cv2.add()
— Safe Saturated Addition
cv2.add(src1, src2[, dst[, mask[, dtype]]]) → dst
Parameters:
src1
: First input array (image)src2
: Second input array (image or scalar)dst
(optional): Output image of the same size and typemask
(optional): Operation maskdtype
(optional): Desired output type
Unlike +
operator in NumPy, cv2.add()
saturates at 255 (no wraparound).
Example: Image Addition
import cv2
img1 = cv2.imread('img1.jpg')
img2 = cv2.imread('img2.jpg')
added = cv2.add(img1, img2)
cv2.imwrite('added.jpg', added)
📷 Output: Placeholder for added.jpg
cv2.subtract()
— Safe Subtraction
cv2.subtract(src1, src2[, dst[, mask[, dtype]]])
- Prevents negative pixel values (saturates at 0).
subtracted = cv2.subtract(img1, img2)
cv2.imwrite('subtracted.jpg', subtracted)
📷 Placeholder for subtracted.jpg
Blending Images with Weights — cv2.addWeighted()
cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) → dst
Parameters:
src1
,src2
: Input imagesalpha
,beta
: Weight of the input imagesgamma
: Scalar added to each sum
Use case: Create transparency or dissolve effect between two images.
blended = cv2.addWeighted(img1, 0.6, img2, 0.4, 0)
cv2.imwrite('blended.jpg', blended)
📷 Placeholder for blended.jpg
Use images of the same size and channels for blending and arithmetic operations.
🔣 Bitwise Operations
OpenCV also allows for pixel-level binary logic operations:
cv2.bitwise_and()
cv2.bitwise_or()
cv2.bitwise_xor()
cv2.bitwise_not()
These are commonly used in masking and region selection.
cv2.bitwise_and()
Returns pixel-wise AND between two images (or an image and a mask).
masked = cv2.bitwise_and(img1, img2)
cv2.bitwise_or()
Returns pixel-wise OR of the input images.
combined = cv2.bitwise_or(img1, img2)
cv2.bitwise_xor()
Returns pixels where only one image has a high value.
xor_img = cv2.bitwise_xor(img1, img2)
cv2.bitwise_not()
Inverts all bits (i.e., 255 → 0
, 0 → 255
).
inverted = cv2.bitwise_not(img1)
Bitwise operations require both input images to be of the same size and type. Usually used with binary masks.
🧪 Example: Masking an Object
Step-by-step Masking:
- Load image and logo.
- Convert logo to grayscale.
- Threshold to create binary mask.
- Mask the region on the base image.
- Add the logo using bitwise OR.
import cv2
import numpy as np
img = cv2.imread('background.jpg')
logo = cv2.imread('logo.png')
rows, cols, _ = logo.shape
roi = img[0:rows, 0:cols]
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(logo_gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
logo_fg = cv2.bitwise_and(logo, logo, mask=mask)
dst = cv2.add(img_bg, logo_fg)
img[0:rows, 0:cols] = dst
cv2.imwrite('masked_logo.jpg', img)
📷 Placeholder: Output of masked_logo.jpg
📝 Practice Questions
❓ Question 1
Blend two images using weights 0.7 and 0.3 respectively.
Show Code
blended = cv2.addWeighted(img1, 0.7, img2, 0.3, 0)
❓ Question 2
Apply bitwise AND between two shaped images and save result.
Show Code
result = cv2.bitwise_and(img1, img2)
cv2.imwrite('and_result.jpg', result)
📷 Placeholder for and_result.jpg
✅ Summary
- Explained
cv2.add
,subtract
, andaddWeighted
- Introduced logical bitwise operations and masking
- Detailed pixel blending for overlays
- Full masking example with binary operations